45 PONCA_MULTIARCH_STD_MATH(sqrt);
46 PONCA_MULTIARCH_STD_MATH(numeric_limits);
52 VectorType barycenter = Base::barycenterLocal();
53 VectorArray dBarycenter = Base::barycenterDerivatives();
56 Scalar epsilon =
Scalar(2) * Eigen::NumTraits<Scalar>::epsilon();
57 Scalar consider_as_zero =
Scalar(2) * numeric_limits<Scalar>::denorm_min();
61 Eigen::Matrix<Scalar,2,1> shifted_eivals = Base::m_solver.eigenvalues().template tail<2>().array() - Base::m_solver.eigenvalues()(0);
62 if(shifted_eivals(0) < consider_as_zero || shifted_eivals(0) < epsilon * shifted_eivals(1)) shifted_eivals(0) = 0;
63 if(shifted_eivals(1) < consider_as_zero) shifted_eivals(1) = 0;
66 for(
int k=0; k<Base::NbDerivatives; ++k)
77 Eigen::Matrix<Scalar,2,1> z = - Base::m_solver.eigenvectors().template rightCols<2>().transpose() * (Base::m_dCov[k] * normal);
78 if(shifted_eivals(0)>0) z(0) /= shifted_eivals(0);
79 if(shifted_eivals(1)>0) z(1) /= shifted_eivals(1);
80 m_dNormal.col(k) = Base::m_solver.eigenvectors().template rightCols<2>() * z;
83 if(k>0 || !Base::isScaleDer())
84 dDiff(Base::isScaleDer() ? k-1 : k) += 1;
85 m_dDist(k) = m_dNormal.col(k).dot(barycenter) + normal.dot(dDiff);
92 return Base::m_eCurrentState;