|
GLSDer< DataPoint, _WFunctor, DiffType, T > & | glsDer () |
| Explicit conversion to GLSDer , to access methods potentially hidden by heritage.
|
|
const GLSDer< DataPoint, _WFunctor, DiffType, T > & | glsDer () const |
| Explicit conversion to GLSDer , to access methods potentially hidden by heritage.
|
|
ScalarArray | dtau () const |
| Compute and return \( \tau \) derivatives.
|
|
VectorArray | deta () const |
| Compute and return \( \eta \) derivatives.
|
|
ScalarArray | dkappa () const |
| Compute and return \( \kappa \) derivatives.
|
|
ScalarArray | dtau_normalized () const |
| Compute and return \( \tau \) derivatives.
|
|
VectorArray | deta_normalized () const |
| Compute and return \( t * d\eta \).
|
|
ScalarArray | dkappa_normalized () const |
| Compute and return \( d\kappa * t^{2} \).
|
|
Scalar | geomVar (Scalar wtau=Scalar(1), Scalar weta=Scalar(1), Scalar wkappa=Scalar(1)) const |
| The Geometric Variation is computed as the weighted sum of the GLS scale-invariant partial derivatives.
|
|
template<class DataPoint, class _WFunctor, int DiffType, typename T>
class Ponca::GLSDer< DataPoint, _WFunctor, DiffType, T >
Differentiation of GLSParam.
Method published in [10]
Definition at line 116 of file gls.h.
template<class DataPoint , class _WFunctor , int DiffType, typename T >
The Geometric Variation is computed as the weighted sum of the GLS scale-invariant partial derivatives.
\[
\nu(\mathbf{p},t) =
w_\tau \left(\frac{\delta\tau}{\delta t}\right)^2 +
w_\eta \left( t \frac{\delta\eta}{\delta t}\right)^2 +
w_\kappa \left( t^2 \frac{\delta\kappa}{\delta t}\right)^2
\]
Method published in [10]
- Parameters
-
wtau | Weight applied to \( \tau \) |
weta | Weight applied to \( \eta \) |
wkappa | Weight applied to \( \kappa \) |
- Returns
Definition at line 90 of file gls.hpp.